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Abstract—Optimizing the output power of photovoltaic (PV)
systems requires quantitative information on the global maxi-
mum power point (GMPP). The conventional maximum power
point tracking (MPPT) algorithms cannot ensure the GMPP is
obtained. This research developed a digital twin-based technique
to estimate the GMPP. The PV system built in the simulation
environment is transferred to the complex real-world while
improving the accuracy and robustness of the algorithm in the
real-world environment. The experimental results show that the
suggested technique can bridge the gap between conventional
models and real-world PV systems.

Index Terms—digital twin, transfer learning, photovoltaic sys-
tems, maximum power point estimation

I. INTRODUCTION

In the last decade, tremendous attention and considerable

investments have focused on photovoltaic (PV) systems. As a

renewable energy source, PV systems play an essential role

in reducing the greenhouse effect, coping with the depletion

of primary energy sources, responding to energy demand, etc.

However, the non-linearity of the PV system and the influence

of environmental factors bring significant challenges to its

power optimization.

Several research efforts have attempted to describe the out-

put characteristics of PV systems. Kermadi et al. [1] proposed

a generalized analytical approach to model the PV arrays

under partial shading conditions (PSC). It requires the PV

modules’ standard test conditions (STC) and the irradiance

level imposed on each module. Pendem et al. [2] analyzed

and compared different PV array configurations under PSCs.

In their work, the smallest unit of analysis is the PV module. A

cell-level PV string model was proposed by Ma et al. [3]. The

shading information matrix, including critical environmental

factors for operation locations, is used to describe the observed

current-voltage (I–V) data. However, it is difficult to accurately

understand the solar irradiance and temperature of each PV

cell in the real world. The same problem also appears in

commercial simulation software such as Simulink and PSIM.

Currently, no algorithm can accurately identify the complex

shading conditions in nature and the resulting changes in PV

system output characteristics.

The aforementioned research void is defined as the simula-

tion to real-world (sim-to-real) gap in the PV system in this

paper. Undoubtedly, the sim-to-real gap brings challenges to

the practical application of the MPPE algorithm. If an ana-

lytical model or a machine learning model mainly established

by simulation data is applied in a real-world environment, the

discrepancy between the real-world and simulation environ-

ment will bring about a decrease in the performance or even

invalidity in the strategy. For example, a performance drop

of up to 20% for R-squared value was reported in [4] for the

artificial neural network (ANN) based MPPE model [5]. In [3],

a relative error of 0.235 under specific scenarios is reported.

In a PV system, discrepancies in the physical characteristics

of the PV strings are the primary cause of the sim-to-real

gap. Furthermore, these PV string properties may fluctuate

dramatically owing to temperature, humidity, location, or

wear-and-tear over time. The traditional idea is to incorporate

these influences into the MPPE process as much as possible.

However, this will significantly increase the computational cost

and the difficulty of the model. In contrast, we build a digital

twin model for the PV system, eliminating the error between

the real-world and simulation environment through an artificial

neural network. Real-world tests also demonstrate that the

suggested strategy may effectively bridge the sim-to-real gap.

II. METHODOLOGY

In this section, a shading matrix construction based on

feature point extraction is used to analytically describe the

output characteristics of the PV string. Furthermore, the error

of the analytical model and the real-world is eliminated by the

digital twin model.

A. Digital Twin Model

Fig. 1 shows the system topology of the digital twin model.

We first construct the xreal database by collecting the shading

matrix of the real-world PV systems. The shading matrix is

defined as a vectorized description of the shading condition

of a PV string according to [4]. The position of the global
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Fig. 1. Schematic diagram of the proposed MPPE system.

maximum power point (GMPP) can be extrapolated from the

shading matrix. At the same time, we construct an analytical

model of these PV systems in the digital space, and an xmodel

database is generated [6]. There is a deviation between the

inference results from xreal and xmodel due to the sim-to-real

gap. Therefore, we model the gap through a neural network.

In the MPPE process, we map xreal to xmodel, and the output

is added with the deviations from the neural network to obtain

the results of the MPPE.

III. SIMULATIONS

TABLE I
SPECIFICATIONS OF THE PV MODULE UNDER STANDARD TEST

CONDITIONS

Parameter Value

Maximum Power Pmpp 50.00W
Open Circuit Voltage Voc 22.02V
Short Circuit Current Isc 3.18A

Voltage at Pmpp 17.82V
Current at Pmpp 2.80A

Cells per Module 36
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Fig. 2. GMPP error distributions of the simulation model and the proposed
digital twin model.

The proposed MPPE approach is simulated and evaluated

using MATLAB/Simulink with the PV modules whose speci-

fications are listed in Table. I. PV strings with three and five

PV modules in series connection were used to collect samples

under various atmospheric conditions. A PROVA PV system

analyzer was used to capture I-V data and atmospheric infor-

mation. This data collection covers the real-time characteristics

of a PV string over five days. Fig. 2 shows the error distribution

of MPPE results of the proposed method in terms of the GMPP

voltage. It can be seen that the proposed method significantly

improves the accuracy of the analytical model-based MPPE

system. The average relative error of the estimated GMPP

between the simulation model and the real world is around

4% and 5%, respectively. With the proposed algorithm, the

sim-to-real error is eliminated. The error distributions’ median

value has been around zero for both 3S and 5S PV strings.

IV. CONCLUSIONS

In this paper, a digital twin-based MPPE approach was

proposed. We demonstrated the use of digital twin to estimate

the GMPP is capable of bridging the sim-to-real gap. The

proposed method improved performance of estimation and

shows a promising application for GMPPT system.
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